Heavy Neutral Leptons at the Electron-Ion Collider

Keping Xie

University of Pittsburgh

Rare Processes and Precision Frontier Townhall Meeting May 13, 2019

with B. Batell, T. Ghosh, T. Han, to appear

Introduction and Motivation

- The Electron-Ion Collider (EIC) is approved by the U.S. DOE with an estimated cost of \$1.6 to \$2.6 billion, to be located at Brookhaven National Laboratory (BNL).
- The EIC features [1212.1701]
 - Highly polarized (70%) electron and nucleon beams
 - lons: proton, deuteron to uranium or lead
 - C.o.M energies: 20–100 GeV, upgradable to 140 GeV
 - \blacksquare high luminosity: $10^{33-34}~{\rm cm}^{-2}{\rm s}^{-1}$ (10-1000 times HERA)
- The EIC goals: (designed as a QCD machine)
 - The proton spin
 - The motion of quarks and gluons in the proton
 - the tomographic images of the proton
 - QCD matter at the extreme gluon density
 - Quark hadronization
- Other physics opportunities: EW and BSM.
 We take the Heavy Neutral Leptons as a case study.

The Electron-Ion Collider (EIC)

■ We want to maximize the machine reachability

$$e(20 \text{ GeV}) + p(250 \text{ GeV}), \sqrt{s} = 140 \text{ GeV}.$$

- We assume the integrated luminosity to be $\mathcal{L} = 200 \text{ fb}^{-1}$.
- Primary physics goals require a multi-purpose Hermitic detector with excellent tracking resolution and particle ID capabilities over a broad momentum range.
- Detector still under design; see EIC Detector Requirements R&D Handbook

[http://www.eicug.org/web/sites/default/files/EIC_HANDBOOK_v1.2.pdf]

η	Resolution			
Tracking (σ_p/p)				
$2.5 < \eta \le 3.5$	$0.1\% imes p \oplus 2\%$			
$1.0 < \eta \le 2.5$	$0.05\% imes p \oplus 1\%$			
$ \eta \le 1.0$	$0.05\% imes p \oplus 0.5\%$			

11 = 1.0	$0.00 \text{ is } \times p \oplus 0.0 \text{ is}$			
Electromagnetic calorimeter (σ_E/E)				
$-4.5 \le \eta < -2.0$	$2\%/\sqrt{E}$			
$-2.0 \le \eta < -1.0$	$7\%/\sqrt{E}$			
$-1.0 \le \eta \le 4.5$	$12\%/\sqrt{E}$			
Hadronic calorimeter (σ_E/E)				
$1.0 < \eta \le 3.5$	$50\%/\sqrt{E}$			
$ \eta \le 1.0$	$100\%/\sqrt{E}$			

The Heavy Neutral Leptons (HNLs) at the EIC

- The HNLs are motivated by the potential connection to the neutrino mass generation, through the Type-I Seesaw Mechanism [Minkowski PLB '77, Gell-Mann et. al. '79, etc.]
- The Lagrangian

$$\mathscr{L} \supset y_{\mathbf{v}}^{iI} L_i H N_I + \text{ h.c.}$$

The interactions can be written as

$$\mathcal{L} \supset \frac{g}{\sqrt{2}} \, U_{iI} \, W_\mu^- \, l_i^\dagger \bar{\sigma}^\mu N_I + \frac{g}{2 \, c_W} \, U_{iI} \, Z_\mu \bar{\mathbf{v}}_i^\dagger \bar{\sigma}^\mu N_I + \text{ h.c.}$$

■ The HNL production and decays (lifetime)

The Prompt HNL Searches

- The HNLs decay promptly for larger masses and mixing angle
- The strongest signal comes the lepton number violating e^+jjj : $e^-p \to (N \to e^+jj)j$.
- The hadronic mode gives largest rate, and allows for full final state reconstruction.
- the main SM background comes from charge mis-identification: e^- fakes as e^+ .
- lacktriangle the e^+jj invariant mass window cut very efficiently

			
	Signal		a- iii
Cut selection	$m_N = 10 \text{ GeV}$	$m_N = 50 \text{ GeV}$	e <i>jjj</i> 0
	[pb]	[pb]	[pb]
Production	5.53	0.95	449
Exactly 1ℓ : $p_{T_{\ell}} > 2$ GeV, $0 < \eta_{\ell} < 3.5$	2.43	0.74	36.7
Exactly $3j$: $p_{T_{j_1}} > 20 \; \text{GeV}, \; p_{T_{j_{2,3}}} > 5 \; \text{GeV}, \; \eta_{j_{1,2,3}} < 3.5$	0.84	0.43	1.30
Isolation: $\Delta R(\ell,j_{1,2,3}) > 0.4$	0.52	0.41	1.30
min (IM///: :)	0.52	×	4.31×10^{-2}
$\min \left(\left M(\ell j_{\alpha} j_{\beta}) - m_N \right \right) < 5 \text{ GeV } (\alpha, \beta = 1, 2, 3)$	× ×	0.33	0.59
Require one e^+ [$f^{\mbox{\scriptsize MID}}=0.1\%$]	0.52	×	4.31×10^{-5}
	×	0.33	5.93×10^{-4}
Require one e^+ [$f^{\text{MID}} = 0.01\%$]	0.52	×	4.31×10^{-6}
Require one $e \cdot [f^{m-1} = 0.01\%]$	×	0.33	5.93×10^{-5}

The Displaced HNL Searches

- At a small mass/mixing angle, the HNLs are long lived
- The signature of displaced lepton with large transverse impact parameter.
- Event selection: loose (tight) cuts
 - HNL decays with cylinder of length 2 m and radius 40 cm
 - At least one lepton with $p_T > 1(5)$ GeV
 - lacktriangle Transverse impact parameter $d_T > 2$ (20) mm
 - Jet at primary vertex must have $p_T > 5(10) \text{ GeV}$.
- The SM background arises from the heavy-flavor decay.
 - At large impact parameter $d_T = 20$ mm, no SM background.
 - \blacksquare At small impact parameter $d_T=2$ mm, we can perform the isolation cut $\Delta R>0.4$ to exclude largely the SM background.

The EIC sensitivity

- We show the EIC sensitivity to 5 displaced events
- the EIC can explore new parameter beyond the current bounds
- \blacksquare At low mass around 5 GeV, we can improve the current bound by up to one order of magnitude in $|U_e|^2$
- Potential to extend beyond the existing limits at high masses
- Other experimental limits can also probe HNLs in these masses ranges. see Physics Beyond Colliders report [1901.09966]

Conclusions and Outlooks

- The EIC will open up a new QCD frontier. It is also interesting to ask the opportunity to search the BSM physics.
- We find the EIC has the potential to search HNLs, especially in the few GeV mass range, through the displaced vertex.
- Such studies can inform the EIC detector design, (e.g. tracking system for displaced particle searches)
- Other BSM physics exploration:
 - new light particle in 1–100 GeV mass range
 - SMEFT interactions [Boughezal, Petriello, Wiegand, 2004.00748]
 - lepton flavor voilation [Gonderinger, Ramsey-Musolf, 1006.5063]
 - precision EW physics [Kumar et al. 1302.6263]
- It is very early days for the EIC. There is much more room for exploration.

The SM background for the displaced search

SM background, $D(B) \rightarrow lX$, can be suppressed with isolation cut.

